Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-{(1*R*,2*R*)-2-[Bis(4-methylbenzyl)amino]cyclohexyl}isoindoline-1,3-dione

Chao Li, Xiang-Kai Fu,* Chuan-Long Wu and Jing Huang

College of Chemistry and Chemical Engineering, Research Institute of Applied Chemistry, Southwest University, The Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing 400715, People's Republic of China Correspondence e-mail: fxk@swu.edu.cn

Received 20 April 2011; accepted 12 May 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.047; wR factor = 0.112; data-to-parameter ratio = 8.4.

In the title molecule, $C_{30}H_{32}N_2O_2$, the two tolyl rings form dihedral angles of 65.8 (1) and 6.6 (1)° with the isoindole-1,3-dione mean plane. The cyclohexane ring adopts a chair conformation.

Related literature

For applications of chiral tertiary amines as catalysts for direct aldol reactions, see: Paradowska *et al.* (2009). For details of the synthesis, see: Kaik & Gawroński (2003); Gawronski *et al.* (1998).

Experimental

Crystal data

-	
$C_{30}H_{32}N_2O_2$ $M_r = 452.58$ Monoclinic, P_2 a = 12.472 (2) Å b = 9.2853 (17) Å c = 12.505 (2) Å	$V = 1309.1 (4) Å^{3}$ Z = 2 Mo K\alpha radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 298 K $0.38 \times 0.24 \times 0.24 \text{ mm}$
$\beta = 115.305 \ (2)^{\circ}$	
Data collection	
Bruker SMART APEX diffractometer 6901 measured reflections	2597 independent reflections 2042 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.112$ S = 1.11 2597 reflections 309 parameters	1 restraint H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.10 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.11 \text{ e } \text{\AA}^{-3}$
Data collection: <i>SMART</i> (Bruk	xer, 2000); cell refinement: <i>SAI</i>
(Bruker, 2000); data reduction: S	SAIN1; program(s) used to so

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to the Southwest University of China for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5079).

References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Gawronski, J., Kazmierczak, F., Gawronska, K., Rychlewska, U., Nordén, B. & Holmén, A. (1998). J. Am. Chem. Soc. 120, 12083–12091.

Kaik, M. & Gawroński, J. (2003). *Tetrahedron Asymmetry*, **14**, 1559–1563. Paradowska, J., Rogozinóska, M. & Mlynarski, J. (2009). *Tetrahedron Lett.* **50**,

Paradowska, J., Rogozinoska, M. & Miynarski, J. (2009). Tetrahedron Lett. 50, 1639–1641.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, 01483 [doi:10.1107/S1600536811018101]

2-{(1R,2R)-2-[Bis(4-methylbenzyl)amino]cyclohexyl}isoindoline-1,3-dione

C. Li, X.-K. Fu, C.-L. Wu and J. Huang

Comment

Chiral tertiary amines are efficient catalysts for direct aldol reactions of ketones with aldehydes (Paradowska *et al.*, 2009). Therefore, it is of great interest for us to investigate the novel chiral tertiary amine as a chiral catalyst. In this article we would like to report the crystal structure of the title compound (I).

In (I) (Fig. 1), two tolyl rings form dihedral angles of 65.8(1) and $6.6(1)^{\circ}$, respectively, with the isoindole-1,3-dione mean plane. Cyclohexane ring adopts a chair conformation. This type of molecular geometry was reported also by Gawronski *et al.* (1998). It could be found that in the crystal structures the cyclohexane rings adopt chair conformations with phthalimide rings in equatorial orientation.

Experimental

To a solution of (1R,2R)-*N*-phthaloyl-1,2-diaminocyclohexane (2.44 g, 10 mmol) (Kaik *et al.*, 2003; Gawronski *et al.*, 1998) in acetonitrile (50 ml) was added at room temperature K₂CO₃ (3.20 g, 23 mmol) and 4-methylbenzyl chloride (3 mL, 25 mmol). The mixture was refluxed with stirring for 5 h. The solvent was removed *in vacuo* and the mixture was extracted with dichloromethane and NaHCO₃ solution. The organic solution was dried over MgSO₄ and evaporated. Product was directly purified through flash column chromatography on a slilca gel to afford white solid. A crystal of (I) suitable for X-ray analysis was grown from diethyl ether by slow evaporation at room temperature.

Refinement

All H atoms were placed in idealized positions and treated as riding, with C—H = 0.96 (CH₃), $U_{iso}(H) = 1.5 U_{eq}(CH_3)$, and C—H = 0.97 (CH₂), 0.98 or 0.93 Å (CH), $U_{iso}(H) = 1.2 U_{eq}(CH and CH_2)$. In the absence of any significant anomalous scatterers in the molecule, attempts to confirm the absolute structure by refinement of the Flack parameter in the presence of 1479 sets of Friedel equivalents led to an inconclusive value of -1.1 (17). Therefore, the Friedel pairs were merged before the final refinement and the absolute configuration was assigned to correspond with that of the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of the title compound.

Figures

Fig. 1. The molecular structure of (I) showing the atomic numbering and 20% probability displacement ellipsoids.

2-{(1R,2R)-2-[Bis(4-methylbenzyl)amino]cyclohexyl}isoindoline- 1,3-dione

Crystal data	
$C_{30}H_{32}N_2O_2$	F(000) = 484
$M_r = 452.58$	$D_{\rm x} = 1.148 {\rm Mg} {\rm m}^{-3}$
Monoclinic, P2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 1969 reflections
a = 12.472 (2) Å	$\theta = 2.8 - 21.3^{\circ}$
b = 9.2853 (17) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 12.505 (2) Å	T = 298 K
$\beta = 115.305 \ (2)^{\circ}$	Block, colourless
$V = 1309.1 (4) \text{ Å}^3$	$0.38\times0.24\times0.24~mm$
Z = 2	

Data collection

Radiation source: fine-focus sealed tube $R_{int} = 0.022$ graphite $\theta_{max} = 25.5^{\circ}, \theta_{min} = 1.8^{\circ}$ ϕ and ω scans $h = -13 \rightarrow 15$ 6901 measured reflections $k = -9 \rightarrow 11$
graphite $\theta_{max} = 25.5^{\circ}, \theta_{min} = 1.8^{\circ}$ ϕ and ω scans $h = -13 \rightarrow 15$ 6901 measured reflections $k = -9 \rightarrow 11$
φ and ω scans $h = -13 \rightarrow 15$ 6901 measured reflections $k = -9 \rightarrow 11$
6001 measured reflections $k = -0 \rightarrow 11$
$k = -\frac{1}{2}$
2597 independent reflections $l = -14 \rightarrow 15$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.112$	H-atom parameters constrained
<i>S</i> = 1.11	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0526P)^{2} + 0.0478P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2597 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
309 parameters	$\Delta \rho_{max} = 0.10 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{min} = -0.11 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

-- . .--

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.3760 (3)	0.0454 (4)	0.7604 (3)	0.0615 (8)
H1	0.3811	0.0357	0.8405	0.074*
C2	0.4270 (3)	-0.0921 (4)	0.7338 (3)	0.0780 (10)
H2A	0.4295	-0.0825	0.6577	0.094*
H2B	0.5076	-0.1051	0.7934	0.094*
C3	0.3546 (3)	-0.2234 (4)	0.7319 (4)	0.0917 (12)
H3A	0.3862	-0.3069	0.7084	0.110*
H3B	0.3606	-0.2408	0.8108	0.110*
C4	0.2260 (3)	-0.2031 (4)	0.6470 (4)	0.1012 (13)
H4A	0.1805	-0.2863	0.6503	0.121*
H4B	0.2190	-0.1949	0.5669	0.121*
C5	0.1767 (3)	-0.0685 (4)	0.6784 (4)	0.0910 (12)
H5A	0.1791	-0.0802	0.7565	0.109*
H5B	0.0944	-0.0568	0.6225	0.109*
C6	0.2455 (3)	0.0666 (4)	0.6772 (3)	0.0658 (8)
H6	0.2410	0.0744	0.5972	0.079*
C7	0.4942 (2)	0.2658 (4)	0.8556 (2)	0.0581 (7)
C8	0.4647 (3)	0.2219 (4)	0.6645 (3)	0.0641 (8)
C9	0.5322 (3)	0.3581 (4)	0.7045 (2)	0.0646 (8)
C10	0.5750 (3)	0.4513 (5)	0.6459 (3)	0.0876 (11)
H10	0.5641	0.4332	0.5687	0.105*
C11	0.6349 (3)	0.5730 (5)	0.7066 (4)	0.0955 (12)
H11	0.6642	0.6386	0.6695	0.115*
C12	0.6514 (3)	0.5976 (5)	0.8200 (4)	0.0961 (12)
H12	0.6931	0.6790	0.8592	0.115*
C13	0.6079 (3)	0.5051 (4)	0.8780 (3)	0.0806 (10)
H13	0.6180	0.5237	0.9548	0.097*
C14	0.5493 (2)	0.3844 (4)	0.8184 (2)	0.0588 (8)
C15	0.1637 (3)	0.1925 (5)	0.7988 (3)	0.0837 (10)
H15A	0.2246	0.1407	0.8638	0.100*
H15B	0.0903	0.1388	0.7738	0.100*
C16	0.1474 (3)	0.3400 (5)	0.8414 (3)	0.0747 (9)
C17	0.0420 (4)	0.3825 (5)	0.8398 (4)	0.0908 (12)
H17	-0.0231	0.3211	0.8086	0.109*
C18	0.0302 (4)	0.5158 (5)	0.8841 (4)	0.0945 (13)
H18	-0.0424	0.5407	0.8833	0.113*
C19	0.1212 (4)	0.6106 (5)	0.9284 (3)	0.0828 (11)
C20	0.2259 (4)	0.5699 (6)	0.9282 (4)	0.1076 (14)
H20	0.2899	0.6331	0.9568	0.129*
C21	0.2390 (4)	0.4372 (7)	0.8866 (4)	0.1091 (15)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H21	0.3123	0.4124	0.8890	0.131*
C22	0.1084 (4)	0.7562 (6)	0.9758 (4)	0.1147 (15)
H22A	0.0400	0.7556	0.9925	0.172*
H22B	0.0990	0.8290	0.9180	0.172*
H22C	0.1779	0.7763	1.0471	0.172*
C23	0.0991 (3)	0.2557 (5)	0.5925 (3)	0.0788 (10)
H23A	0.0567	0.3291	0.6141	0.095*
H23B	0.0443	0.1777	0.5543	0.095*
C24	0.1419 (3)	0.3184 (4)	0.5070 (3)	0.0675 (9)
C25	0.1056 (3)	0.2635 (5)	0.3942 (3)	0.0793 (10)
H25	0.0565	0.1830	0.3707	0.095*
C26	0.1426 (3)	0.3289 (6)	0.3161 (3)	0.0906 (13)
H26	0.1169	0.2914	0.2402	0.109*
C27	0.2150 (4)	0.4459 (5)	0.3467 (3)	0.0855 (11)
C28	0.2522 (4)	0.4976 (5)	0.4595 (4)	0.0971 (12)
H28	0.3027	0.5767	0.4833	0.117*
C29	0.2161 (4)	0.4344 (4)	0.5382 (3)	0.0859 (11)
H29	0.2429	0.4716	0.6143	0.103*
C30	0.2538 (5)	0.5162 (8)	0.2598 (4)	0.140 (2)
H30A	0.2079	0.4782	0.1820	0.209*
H30B	0.3363	0.4967	0.2828	0.209*
H30C	0.2417	0.6184	0.2593	0.209*
N1	0.4460 (2)	0.1719 (3)	0.76050 (19)	0.0566 (6)
N2	0.1976 (2)	0.2011 (3)	0.6999 (2)	0.0671 (7)
01	0.49097 (18)	0.2479 (3)	0.95003 (16)	0.0775 (7)
O2	0.4310 (2)	0.1639 (3)	0.56978 (19)	0.0869 (7)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0628 (17)	0.062 (2)	0.0575 (16)	-0.0014 (16)	0.0233 (14)	0.0042 (15)
C2	0.0661 (19)	0.065 (2)	0.092 (2)	0.0084 (18)	0.0231 (18)	0.0055 (19)
C3	0.085 (2)	0.061 (2)	0.116 (3)	0.005 (2)	0.031 (2)	0.003 (2)
C4	0.084 (2)	0.066 (3)	0.132 (3)	-0.006 (2)	0.026 (2)	-0.014 (2)
C5	0.062 (2)	0.076 (3)	0.122 (3)	-0.008 (2)	0.026 (2)	-0.006 (2)
C6	0.0595 (17)	0.065 (2)	0.0681 (18)	0.0039 (17)	0.0226 (15)	-0.0002 (17)
C7	0.0476 (15)	0.072 (2)	0.0478 (15)	0.0018 (15)	0.0139 (12)	0.0009 (15)
C8	0.0733 (19)	0.070 (2)	0.0529 (17)	0.0020 (17)	0.0310 (15)	-0.0014 (17)
C9	0.0653 (18)	0.071 (2)	0.0595 (18)	-0.0003 (17)	0.0288 (15)	0.0083 (17)
C10	0.104 (3)	0.091 (3)	0.078 (2)	-0.009 (3)	0.049 (2)	0.007 (2)
C11	0.104 (3)	0.087 (3)	0.101 (3)	-0.024 (3)	0.048 (2)	0.011 (3)
C12	0.091 (3)	0.081 (3)	0.098 (3)	-0.020 (2)	0.023 (2)	0.000 (2)
C13	0.081 (2)	0.086 (3)	0.067 (2)	-0.015 (2)	0.0242 (18)	-0.008 (2)
C14	0.0514 (16)	0.065 (2)	0.0538 (16)	-0.0007 (15)	0.0161 (13)	-0.0004 (15)
C15	0.093 (2)	0.080 (3)	0.093 (2)	0.007 (2)	0.053 (2)	0.010 (2)
C16	0.081 (2)	0.084 (3)	0.0734 (19)	0.006 (2)	0.0466 (18)	0.009 (2)
C17	0.095 (3)	0.080 (3)	0.120 (3)	-0.003 (2)	0.067 (2)	0.010 (3)
C18	0.097 (3)	0.093 (3)	0.118 (3)	0.016 (3)	0.071 (3)	0.014 (3)

C19	0.098 (3)	0.094 (3)	0.063 (2)	0.005 (2)	0.039 (2)	0.004 (2)
C20	0.092 (3)	0.125 (4)	0.104 (3)	-0.015 (3)	0.041 (2)	-0.038 (3)
C21	0.079 (2)	0.140 (4)	0.115 (3)	0.003 (3)	0.048 (2)	-0.037 (3)
C22	0.150 (4)	0.103 (4)	0.087 (3)	0.015 (3)	0.048 (3)	-0.009 (3)
C23	0.0663 (19)	0.084 (3)	0.079 (2)	0.016 (2)	0.0249 (17)	0.001 (2)
C24	0.0640 (18)	0.064 (2)	0.0644 (19)	0.0193 (17)	0.0176 (15)	0.0024 (17)
C25	0.0636 (19)	0.085 (3)	0.078 (2)	0.0056 (19)	0.0194 (17)	-0.015 (2)
C26	0.080 (2)	0.119 (4)	0.062 (2)	0.018 (3)	0.0195 (19)	-0.012 (2)
C27	0.090 (3)	0.089 (3)	0.074 (2)	0.022 (3)	0.031 (2)	0.016 (2)
C28	0.119 (3)	0.066 (2)	0.091 (3)	-0.001 (2)	0.031 (2)	0.009 (2)
C29	0.120 (3)	0.063 (2)	0.064 (2)	0.003 (2)	0.029 (2)	0.0004 (19)
C30	0.149 (4)	0.164 (6)	0.126 (4)	0.026 (4)	0.078 (3)	0.040 (4)
N1	0.0595 (13)	0.0603 (16)	0.0502 (12)	-0.0025 (13)	0.0236 (11)	0.0015 (12)
N2	0.0656 (15)	0.0680 (19)	0.0686 (15)	0.0087 (14)	0.0296 (13)	0.0038 (14)
01	0.0797 (13)	0.1028 (19)	0.0471 (11)	-0.0103 (14)	0.0243 (10)	0.0023 (12)
O2	0.1193 (18)	0.0876 (17)	0.0625 (13)	-0.0082 (16)	0.0472 (13)	-0.0137 (13)

Geometric parameters (Å, °)

C1—N1	1.463 (4)	C15—C16	1.514 (6)
C1—C6	1.524 (4)	C15—H15A	0.9700
C1—C2	1.525 (4)	C15—H15B	0.9700
C1—H1	0.9800	C16—C17	1.365 (5)
C2—C3	1.511 (5)	C16—C21	1.374 (6)
C2—H2A	0.9700	C17—C18	1.390 (6)
C2—H2B	0.9700	С17—Н17	0.9300
C3—C4	1.510 (5)	C18—C19	1.354 (6)
С3—НЗА	0.9700	C18—H18	0.9300
С3—Н3В	0.9700	C19—C20	1.360 (6)
C4—C5	1.517 (6)	C19—C22	1.512 (6)
C4—H4A	0.9700	C20—C21	1.374 (7)
C4—H4B	0.9700	С20—Н20	0.9300
C5—C6	1.524 (5)	C21—H21	0.9300
С5—Н5А	0.9700	C22—H22A	0.9600
С5—Н5В	0.9700	С22—Н22В	0.9600
C6—N2	1.464 (4)	C22—H22C	0.9600
С6—Н6	0.9800	C23—N2	1.470 (4)
C7—O1	1.211 (3)	C23—C24	1.501 (5)
C7—N1	1.387 (4)	C23—H23A	0.9700
C7—C14	1.474 (4)	С23—Н23В	0.9700
C8—O2	1.201 (4)	C24—C29	1.364 (5)
C8—N1	1.398 (4)	C24—C25	1.382 (4)
C8—C9	1.483 (5)	C25—C26	1.385 (5)
C9—C14	1.369 (4)	С25—Н25	0.9300
C9—C10	1.380 (5)	C26—C27	1.359 (6)
C10—C11	1.388 (6)	С26—Н26	0.9300
C10—H10	0.9300	C27—C28	1.369 (5)
C11—C12	1.361 (6)	C27—C30	1.513 (6)
C11—H11	0.9300	C28—C29	1.376 (5)

C12—C13	1.376 (5)	C28—H28	0.9300
C12—H12	0.9300	С29—Н29	0.9300
C13—C14	1.371 (5)	С30—Н30А	0.9600
C13—H13	0.9300	С30—Н30В	0.9600
C15—N2	1.470 (4)	С30—Н30С	0.9600
N1—C1—C6	111.1 (3)	N2—C15—H15B	109.2
N1—C1—C2	111.6 (2)	С16—С15—Н15В	109.2
C6—C1—C2	112.5 (3)	H15A—C15—H15B	107.9
N1—C1—H1	107.1	C17—C16—C21	116.2 (4)
C6—C1—H1	107.1	C17—C16—C15	122.0 (4)
C2—C1—H1	107.1	C21—C16—C15	121.8 (3)
C3—C2—C1	112.1 (3)	C16—C17—C18	121.2 (4)
С3—С2—Н2А	109.2	C16—C17—H17	119.4
C1—C2—H2A	109.2	С18—С17—Н17	119.4
C3—C2—H2B	109.2	C19—C18—C17	121.9 (4)
C1—C2—H2B	109.2	С19—С18—Н18	119.0
H2A—C2—H2B	107.9	С17—С18—Н18	119.0
C4—C3—C2	111.0 (3)	C18—C19—C20	117.2 (4)
С4—С3—НЗА	109.4	C18—C19—C22	122.0 (4)
С2—С3—НЗА	109.4	C20—C19—C22	120.8 (4)
C4—C3—H3B	109.4	C19—C20—C21	121.3 (4)
С2—С3—Н3В	109.4	С19—С20—Н20	119.3
НЗА—СЗ—НЗВ	108.0	С21—С20—Н20	119.3
C3—C4—C5	110.3 (3)	C20—C21—C16	122.2 (4)
C3—C4—H4A	109.6	C20—C21—H21	118.9
C5—C4—H4A	109.6	C16—C21—H21	118.9
C3—C4—H4B	109.6	C19—C22—H22A	109.5
C5—C4—H4B	109.6	C19—C22—H22B	109.5
H4A—C4—H4B	108.1	H22A—C22—H22B	109.5
C4—C5—C6	112.5 (3)	C19—C22—H22C	109.5
C4—C5—H5A	109.1	H22A—C22—H22C	109.5
С6—С5—Н5А	109.1	H22B—C22—H22C	109.5
C4—C5—H5B	109.1	N2—C23—C24	111.9 (2)
С6—С5—Н5В	109.1	N2—C23—H23A	109.2
H5A—C5—H5B	107.8	C24—C23—H23A	109.2
N2-C6-C5	114.9 (2)	N2—C23—H23B	109.2
N2—C6—C1	112.5 (3)	C24—C23—H23B	109.2
C5-C6-C1	109.2 (3)	H23A—C23—H23B	107.9
N2—C6—H6	106.6	$C_{29} - C_{24} - C_{25}$	118.0 (3)
С5—С6—Н6	106.6	C29—C24—C23	120.4 (3)
C1—C6—H6	106.6	C25-C24-C23	121.5 (3)
01—C7—N1	124.5 (3)	C24—C25—C26	119.7 (4)
01	128.7 (3)	C24—C25—H25	120.2
N1—C7—C14	106.8 (2)	C26—C25—H25	120.2
02-C8-N1	125.6 (3)	$C_{27} - C_{26} - C_{25}$	122.2(3)
02	128.6 (3)	C27—C26—H26	118.9
N1—C8—C9	105.8 (2)	C25—C26—H26	118.9
C14-C9-C10	121.1 (3)	C26—C27—C28	117.5 (4)
C14—C9—C8	108.5 (3)	C26—C27—C30	121.4 (4)
	× /		(.)

C10—C9—C8	130.4 (3)	C28—C27—C30	121.1 (5)
C9—C10—C11	117.3 (3)	C27—C28—C29	121.1 (4)
C9—C10—H10	121.3	С27—С28—Н28	119.4
C11-C10-H10	121.3	С29—С28—Н28	119.4
C12-C11-C10	120.8 (4)	C24—C29—C28	121.4 (4)
C12—C11—H11	119.6	С24—С29—Н29	119.3
C10-C11-H11	119.6	С28—С29—Н29	119.3
C11—C12—C13	121.7 (4)	С27—С30—Н30А	109.5
C11—C12—H12	119.1	С27—С30—Н30В	109.5
C13—C12—H12	119.1	H30A—C30—H30B	109.5
C14—C13—C12	117.5 (3)	С27—С30—Н30С	109.5
C14—C13—H13	121.2	H30A-C30-H30C	109.5
C12—C13—H13	121.2	H30B-C30-H30C	109.5
C9—C14—C13	121.4 (3)	C7—N1—C8	110.9 (3)
C9—C14—C7	108.0 (3)	C7—N1—C1	123.1 (2)
C13—C14—C7	130.7 (3)	C8—N1—C1	125.8 (3)
N2-C15-C16	112.1 (3)	C6—N2—C23	111.6 (3)
N2—C15—H15A	109.2	C6—N2—C15	113.9 (3)
C16—C15—H15A	109.2	C23—N2—C15	111.1 (2)
N1—C1—C2—C3	-179.3 (3)	C18—C19—C20—C21	-1.0 (7)
C6—C1—C2—C3	-53.7 (4)	C22—C19—C20—C21	179.3 (4)
C1—C2—C3—C4	54.5 (5)	C19—C20—C21—C16	1.1 (8)
C2—C3—C4—C5	-56.2 (5)	C17—C16—C21—C20	0.1 (7)
C3—C4—C5—C6	58.2 (5)	C15-C16-C21-C20	-178.3 (4)
C4—C5—C6—N2	176.5 (3)	N2—C23—C24—C29	-61.9 (4)
C4—C5—C6—C1	-56.0 (4)	N2—C23—C24—C25	119.8 (3)
N1—C1—C6—N2	-52.1 (3)	C29—C24—C25—C26	-1.6 (5)
C2—C1—C6—N2	-178.0 (3)	C23—C24—C25—C26	176.9 (3)
N1—C1—C6—C5	179.1 (3)	C24—C25—C26—C27	0.6 (5)
C2—C1—C6—C5	53.2 (4)	C25—C26—C27—C28	0.6 (6)
O2—C8—C9—C14	178.8 (3)	C25—C26—C27—C30	-179.6 (4)
N1—C8—C9—C14	-0.7 (3)	C26—C27—C28—C29	-0.8 (6)
O2—C8—C9—C10	-1.2 (6)	C30—C27—C28—C29	179.4 (4)
N1—C8—C9—C10	179.3 (3)	C25—C24—C29—C28	1.4 (5)
C14—C9—C10—C11	-0.6 (5)	C23—C24—C29—C28	-177.1 (3)
C8—C9—C10—C11	179.4 (3)	C27—C28—C29—C24	-0.2 (6)
C9—C10—C11—C12	0.7 (6)	O1—C7—N1—C8	-179.6 (3)
C10-C11-C12-C13	-1.2 (7)	C14—C7—N1—C8	-0.6 (3)
C11—C12—C13—C14	1.5 (6)	O1—C7—N1—C1	5.5 (4)
C10—C9—C14—C13	1.0 (5)	C14—C7—N1—C1	-175.5 (2)
C8—C9—C14—C13	-179.0 (3)	O2—C8—N1—C7	-178.7 (3)
C10—C9—C14—C7	-179.6 (3)	C9—C8—N1—C7	0.8 (3)
C8—C9—C14—C7	0.4 (3)	O2—C8—N1—C1	-4.0 (5)
C12—C13—C14—C9	-1.4 (5)	C9—C8—N1—C1	175.5 (3)
C12—C13—C14—C7	179.4 (3)	C6—C1—N1—C7	108.9 (3)
O1—C7—C14—C9	179.1 (3)	C2—C1—N1—C7	-124.7 (3)
N1—C7—C14—C9	0.1 (3)	C6—C1—N1—C8	-65.2 (4)
O1—C7—C14—C13	-1.6 (5)	C2—C1—N1—C8	61.2 (4)
N1—C7—C14—C13	179.5 (3)	C5—C6—N2—C23	-82.1 (4)

N2-C15-C16-C17	120.1 (3)	C1—C6—N2—C23	152.1 (3)
N2-C15-C16-C21	-61.6 (5)	C5—C6—N2—C15	44.6 (4)
C21-C16-C17-C18	-1.3 (6)	C1—C6—N2—C15	-81.2 (3)
C15-C16-C17-C18	177.1 (3)	C24—C23—N2—C6	-73.6 (4)
C16-C17-C18-C19	1.3 (6)	C24—C23—N2—C15	158.1 (3)
C17-C18-C19-C20	-0.1 (6)	C16-C15-N2-C6	164.1 (3)
C17—C18—C19—C22	179.5 (4)	C16-C15-N2-C23	-68.9 (4)

